Abstract

ABSTRACTThe fluorinated epoxy resin, 2,2‐bisphenol hexafluoropropane diglycidyl ether (DGEBHF) was synthesized through a two‐step procedure, and the chemical structure was confirmed by 1H nuclear magnetic resonance (NMR), 13C NMR, and Fourier transform infrared (FTIR) spectra. Moreover, DGEBHF was thermally cured with methyl hexahydrophthalic anhydride (MHHPA). The results clearly indicated that the cured DGEBHF/MHHPA exhibited higher glass transition temperature (Tg 147°C) and thermal decomposition temperature at 5% weight loss (T5 372°C) than those (Tg 131.2°C; T5 362°C) of diglycidyl ether of bisphenol A (DGEBA)/MHHPA. In addition, the incorporation of bis‐trifluoromethyl groups led to enhanced dielectric properties with lower dielectric constant (Dk 2.93) of DGEBHF/MHHPA compared with cured DGEBA resins (Dk 3.25). The cured fluorinated epoxy resin also gave lower water absorption measured in two methods relative to its nonfluorinated counterparts. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 2801–2808, 2013

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call