Abstract

A series of new aromatic polyimides (PIs) and co-PIs containing bulky tert-butyl phenoxy group was synthesized by one-step high-temperature polycondensation of 1,3-diamino-4-(4′- tert-butylphenoxy)benzene ( tBuPDAB) with different commercially available aromatic dianhydrides. The polymers were obtained in quantitative yields with inherent viscosities of 0.40–0.70 dL g−1. They exhibited high thermal stability with 10% weight loss above 480°C and were cast in films with good mechanical properties capable to be tested as gas separation membranes. These PIs were compared with analogs bearing phenoxy group (PDAB). The incorporation of tBu improved the solubility of the PIs, their free volume fraction, d-spacing, and gas permeability coefficients in comparison with their analogs obtained from PDAB. The permeability enhancement was from 2.5 to 8 times depended on the gas tested. The PI, based on tBuPDAB and 4,4’-(hexafluoroisopropylidene)diphtalic anhydride and, thus, containing two different bulky pendant groups, showed the highest gas permeability coefficient for CO2 (58.3 Barrer) and moderate ideal selectivity to the gas pair CO2/CH4 ( α = 18.0).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call