Abstract

This study investigated the structure, microstructure and optical properties of the highly-oriented lead barium titanate (Pb1-xBaxTiO3, PBT) thin films prepared on MgO (100) substrate by a nonaqueous sol-gel process. The film precursor was synthesized by the modified sol-gel processing from lead acetate, barium acetate, and titanium isopropoxide, acetylacetone as chelating agent, and ethylene glycol as solvent. This stable precursor was formed by acetylacetone chelating with titanium isopropoxide and then mixing the solution of the acetates. The spin-coating technique was used to deposit the PBT films on MgO (100) substrate with different barium contents and various spin-coating numbers, respectively. X-ray diffraction was employed to study the crystal structure of the thin film and field emission scanning electron microscopy was used to characterize the microstructure of the films. Optical properties of the thin films were investigated by Ultraviolet-visible spectrophotometer. All films exhibited a (100) preferred orientation, especially the PB0.5T (3-coating layers) thin film. In the optical properties, the adsorption wavelength shifted to the ultraviolet region with increasing barium.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call