Abstract
Based on the principle of molecular design, three comb-like methyl methacrylate copolymer matrixes for gel polymer electrolyte (GPE) were designed and synthesized by reacting methyl methacrylate-maleic anhydride copolymer (P(MMA-MAh)) with poly(ethylene glycol) monomethyl ether (PEGME) of different molecular weight (350, 600, and 750) respectively. The structures of comb-like polymers were characterized by Fourier transform infrared (FTIR) and 1H-nuclear magnetic resonance ( 1H NMR), and their thermal properties were investigated with differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The membranes of P(MMA-MAh) copolymer and comb-like copolymer based polymer electrolytes, plasticized with propylene carbonate (PC) and LiClO 4 as salt, have been prepared by solution casting technique respectively. And AC impedance was used to characterize the ion conductivity of GPE systems. Compared with P(MMA-MAh) copolymer, introducing the flexible ether chain segments can reduce the resistance of ion transport in polymer matrix and improve the mobility of electroactive ions in the GPE systems. With the increase in side chain length of copolymers, ionic conductivity of GPEs is improved dramatically. The highest conductivity observed in MMA/MAh-g-PEGME600 GPE system (matrix content: 45 wt%) is 1.22 × 10 −3 S/cm at 60 °C. And temperature dependence of GPE membranes could be described by Vogel–Tamman–Fulcher (VTF) behavior. TGA curves showed that these gel polymer electrolyte membranes possessed favorable thermal stability for lithium ion battery use.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.