Abstract
Viscoelastic surfactants (VESs) have significant importance for stimulation of low-permeable reservoirs and acid diversion applications to effectively enhance hydrocarbon productivity. VESs offer lower residues, complete gel production, and lower formation damage that make them suitable candidates for hydraulic fracturing applications. In this research work, the synthesis of two new zwitterionic gemini surfactants 1 and 2 together with previously known amidosulfobutaine (C18AMP3SB) has been achieved. Evaluation of viscosity behavior of neat surfactants in CaCl2 solutions at varied temperatures and shear rates did not show any upsurge in their viscosities. Nevertheless, a mixture of surfactants 1 and 2 in combination with C18AMP3SB displayed a significant increase in viscosity, transforming the solution into a highly viscous gel. At a fixed shear rate of 35 s-1 and under different temperatures, solutions of the mixture of surfactants 1 and C18AMP3SB displayed viscosities ranging from 4.34 to 354.3 cPs (81-fold enhancement). Likewise, viscosities of formulations based on mixing 2 and C18AMP3SB under identical experimental conditions ranged from 3.89 to 290 cPs (74-fold enhancement). The viscofying stability tests at 90 °C at a shear rate of 35 s-1 of mixed surfactant formulations revealed no appreciable change in their viscosities for up to 1 h. Moreover, temperature-dependent experiments suggested an increase in the viscosity with an increase in temperature. Thermogravimetric analysis revealed that these surfactants are thermally stable, with no appreciable loss of mass up to 300 °C. The viscoelastic properties of these surfactants suggest their potential and utility in well stimulation for enhanced oil recovery.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.