Abstract

Gomesin (Gm) was the first antimicrobial peptide (AMP) isolated from the hemocytes of a spider, the Brazilian mygalomorph Acanthoscurria gomesiana. We have been studying the properties of this interesting AMP, which also displays anticancer, antimalarial, anticryptococcal and anti-Leishmania activities. In the present study, the total syntheses of backbone-cyclized analogues of Gm (two disulfide bonds), [Cys(Acm)(2,15)]-Gm (one disulfide bond) and [Thr(2,6,11,15),(D)-Pro(9)]-Gm (no disulfide bonds) were accomplished, and the impact of cyclization on their properties was examined. The consequence of simultaneous deletion of pGlu(1) and Arg(16) -Glu-Arg(18) -NH(2) on Gm antimicrobial activity and structure was also analyzed. The results obtained showed that the synthetic route that includes peptide backbone cyclization on resin was advantageous and that a combination of 20% DMSO/NMP, EDC/HOBt, 60 °C and conventional heating appears to be particularly suitable for backbone cyclization of bioactive peptides. The biological properties of the Gm analogues clearly revealed that the N-terminal amino acid pGlu(1) and the amidated C-terminal tripeptide Arg(16) -Glu-Arg(18) -NH(2) play a major role in the interaction of Gm with the target membranes. Moreover, backbone cyclization practically did not affect the stability of the peptides in human serum; it also did not affect or enhanced hemolytic activity, but induced selectivity and, in some cases, discrete enhancements of antimicrobial activity and salt tolerance. Because of its high therapeutic index, easy synthesis and lower cost, the [Thr(2,6,11,15),(D)-Pro(9)]-Gm analogue remains the best active Gm-derived AMP developed so far; nevertheless, its elevated instability in human serum may limit its therapeutic potential.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call