Abstract
We have designed and synthesized four compounds integrating luminescent and photochromic components in their molecular skeletons. Two of them combine a nitrospiropyran photochrome with either one or two naphthalene fluorophores and can be prepared in three synthetic steps. The other two consist of a nitrospiropyran photochrome and a benzophenone phosphore connected by either ether or ester linkages and can be prepared in six or five, respectively, synthetic steps. The luminescent components of these assemblies are expected to transfer energy intramolecularly to the photochromic species upon excitation and encourage their photoisomerization. Consistently, the phosphorescence of the benzophenone units and the fluorescence of the naphthalene components are effectively quenched when these species are connected covalently to a nitrospiropyran. Nonetheless, the photoisomerization of the photochrome becomes significantly less efficient after the covalent attachment to the luminescent partner. The fraction of incident radiations absorbed by either the benzophenone or the naphthalene fragment does not promote the isomerization of the photochromic appendage. Instead, irreversible transformations occur upon irradiation of the luminophore-photochrome assemblies. Thus, the covalent attachment of a benzophenone or a naphthalene to a nitrospiropyran is not a viable strategy to improve the photocoloration efficiency of the photochromic component. Even although the very same luminophores are known to sensitize intermolecularly the isomerization of nitrospiropyrans, the transition to covalent luminophore-photochrome assemblies tends to promote degradation, rather than sensitization, upon irradiation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.