Abstract

Polymer electrolytes consisting of polar pyridine units in the backbone and poly(ethylene oxide) (PEO) side chains are designed for possible application in lithium ion batteries. In particular, aromatic polyethers bearing PEO side chains with varying length are synthesized either by copolymerization of the corresponding PEO based diols with different arylfluorides or by modification of dihydroxyl functionalized precursor polymers with poly(ethylene oxide) methyl ether tosylate. The formation of free standing films is dependent on the PEO content, polymers' composition as well as on the different monomers used. The mechanical properties study shows that the glass transition temperature can be controlled by varying the PEO content. Thermal stability is also influenced by the PEO length: the shorter the PEO side chain, the higher the stability. XRD analysis gives information about the desired amorphous character of these polymers, which is independent of the PEO content. Solid polymer electrolytes prepared by blending the PEO-based polymers with lithium salt and PEO 2000 (used as plasticizer) show ambient temperature conductivities in the range of 10−6 S/cm. To further improve conductivity doping of PEO-based polymers in liquid electrolyte (1 M LiPF6 in EC/DMC 1/1) in some cases results in high conductivities in the range of 10−3 S cm−1 at 80 °C.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call