Abstract

AbstractA set of new aromatic polyamides containing ether and benzonorbornane units were synthesized by the direct phosphorylation polycondensation of 3,6‐bis(4‐carboxyphenoxy)benzonorbornane with various aromatic diamines. The polymers were produced in high yields and moderate to high inherent viscosities (0.64–1.70 dL/g). The polyamides derived from rigid diamines such as p‐phenylenediamine and benzidine were semicrystalline and insoluble in organic solvents. The other polyamides were amorphous and organosoluble and afforded flexible and tough films via solution casting. These films exhibited good mechanical properties, with tensile strengths of 95–101 MPa, elongations at break of 13–25%, and initial moduli of 1.97–2.33 GPa. The amorphous polyamides showed glass‐transition temperatures between 176 and 212 °C (by differential scanning calorimetry) and softening temperatures between 194 and 213 °C (by thermomechanical analysis). Most of the polymers did not show significant weight loss before 450 °C in nitrogen or in air. Some properties of these polyamides were also compared with those of homologous counterparts without the pendent norbornane groups. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 947–957, 2002

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.