Abstract

We prepared amino acid functionalized water-soluble perylene diimides: N,N′-bi(L-glutamic acid)-perylene-3,4;9,10-dicarboxylic diimide (1), N,N′-bi(L-phenylalanine acid)-perylene-3,4;9,10-dicarboxylic diimide (2), N,N′-bi(L-glutamic amine)-perylene-3,4;9,10-dicarboxylic diimide (3) and N,N′-bi(L-phenylalanine amine)-perylene-3,4;9,10-dicarboxylic diimide (4). The structures of 3 and 4 were confirmed by 1H NMR, FT-IR and MS. The maximal absorption bands of compound 1 and 2 in concentrated sulfuric acid were red-shifted for about 48 and 74 nm, respectively, compared with that of Perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTCDA). Nearly no fluorescence was observed for compounds 1 and 2 in water, while compounds 3 and 4 were significantly water-soluble and had very high fluorescent quantum. The mechanism of the optical properties change was discussed, and the π-π stacking caused by H+ led to the changes of fluorescence spectrum and absorption spectrum. The calculated molecular orbital energies and the frontier molecular orbital maps of compounds 1–2 based on density function theory (DFT) calculations were reported. Owing to the high water-soluble, the perylene derivatives 3 and 4 were successfully applied as high-performance fluorochromes for living hela cells imaging.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.