Abstract

A donor–acceptor–donor dyad 4 involving 2-sulfur-3-methylthio-6,7-bis(hexylthio)tetrathiafulvalene (TTF) as a donor attached directly to N,N′-dibutylperylene-3,4,9,10-tetracarboxylic diimide (PDI) as an acceptor was synthesized by condensation of N,N′-dibutyl-1,6-dibromo-3,4,9,10-perylenetetracarboxylic diimide and 2-(2-cyanoethylthio-3-methylthio-6,7-bis(hexylthio)tetrathiafulvalene. The cyclic voltammetric (CV) data implied significant intramolecular interaction and the absorption spectrum indicated that there was an intramolecular charge transfer (ICT) interaction between TTF and PDI moieties in dyad 4. Comparing with PDI 13, the fluorescence emission intensity of dyad 4 was quenched almost quantitatively, which might result from the photo-induced electron transfer (PET) interaction between the PDI and TTF moieties in dyad 4. The fluorescence intensity of dyad 4 could be reversibly modulated by sequential oxidation and reduction of the TTF unit using chemical methods. Thus dyad 4 can be regarded as a new reversible fluorescence-redox dependent molecular switch.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.