Abstract
Phosphate ester compounds display good flame retardancy effect in epoxy resin systems. In this paper, several novel phosphate esters, used as curing agents for epoxy resins, were synthesized based on P2O5, phosphoric acid, and different types of alcohol. The structures of phosphate esters were characterized by 31P nuclear magnetic resonance (31P NMR). Then, a series of flame retardant epoxy composites were prepared by curing the epoxy resins (E-44) with the phosphate esters. The flame retardancy and thermal degradation behaviors of flame retardant epoxy composites were investigated by cone calorimeter test (CCT) and thermogravimetric analysis (TGA), respectively. The results of CCT indicated that phosphate esters can significantly decrease heat release rate, total heat release (THR), and smoke production rate. The sample cured by butyl phosphate ester from phosphorus pentoxide, phosphoric acid and butanol showed the best flame retardant performance among all samples. The TGA results showed that phosphate esters could enhance char residues of flame retardant epoxy composites when compared with those of a composite using T31 as a curing agent at high temperature. It may be concluded that good flame retardant properties of flame retardant epoxy composites are related to the formation of a protective phosphorus-rich char layer. These phosphate esters have a good future on flame retardant epoxy composites.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.