Abstract

Abstract In order to gain insight into the mechanism of the regioselective formation of alkenes in the palladium-catalyzed reductive cleavage of allylic carboxylates or carbonates with formic acid, two types of (η3-1-methylallyl)palladium formates (P1 and P2 types) have been prepared as simple models of catalytic intermediates. The P1 type is a neutral complex coordinated with one tertiary phosphine ligand and a formato ligand: [Pd(η3-MeCHCHCH2)(O2CH)(L)] (L = PMePh2, PMe2Ph, PMe3, P(o-tolyl)3); the P2 type is a cationic complex bearing two tertiary phosphine ligands and a formate counter anion: [Pd(η3-MeCHCHCH2)L2]+CO2H- (L = PMePh2, PMe2Ph, PMe3). The structures and dynamic behavior of the complexes in solution have been examined in detail by NMR spectroscopy. Studies on the thermolysis of the P1 and P2-type complexes have clearly provided the following mechanistic viewpoints: (1) 1-butene and 2-butene are formed from the P1 species; (2) butadiene is liberated from the P2 species; (3) the ratio of 1-butene to 2-butene increases as the bulkiness of phosphine ligand increases. A mechanism involving two geometrical isomers of [Pd(η3-MeCHCHCH2)(H)(L)], which are formed by decarboxylation of the P1-type complexes, has been proposed for the formation of butenes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.