Abstract

The re-evaluation of previous and existing methods in materials processing is becoming ever more critical because of processing and starting materials cost factors. A study on the synthesis and properties investigation of hypereutectic Al–13.5Si–2.5Mg alloy reinforced with carbon chars using coconut shell as the organic precursor has been carried out. The low-cost, double compaction solid-state technique was used. Reinforcing the hypereutectic alloy with coconut shell char particles (size:<140 μm) at 2 vol % and consolidating by reaction sintering at 600 °C in vacuum for 15 min, followed by near net-shape compaction at 250 MPa, increased the hardness of the alloy 6% while reducing its strength (UTS) by only 3%. The use of palm kernel shell char as the dispersed phase was found to yield identical results. At 2 vol % char, the mechanical properties, sintered density and dimensional changes were optimally found to be suitable for lightweight anti-friction electromechanical applications. Attempts to reinforce the alloy with 2 vol % coconut shell chars activated in CO2 reduced its strength in the range of 19 to 26% at different burn-off percentages. This is attributed to the higher amount of oxide products formed during the activation process. At 600 °C, formation of the brittle Al4C3 phase in the different sintered composites containing activated and unactivated chars was identified by X-ray studies. © 1998 Chapman & Hall

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.