Abstract
The application of phosphoric acid (PA)-doped polybenzimidazoles (PBIs) in high-temperature proton exchange membrane fuel cells (HTPEMFCs) requires optimal proton conductivity and fuel cell performance. Recently, we found that branched PBIs could absorb more PA due to their large free volume, and block PBIs could yield obvious nanophase-separated structures, both of which were beneficial to proton transportation. Herein, by constructing a branched PBI core block with another derived PBI structure, a novel membrane with a star-shaped, branched block matrix was prepared for the first time. The dendritic polymer backbone with a phase separation path endows the membranes with high PA doping capacity and high-efficiency proton transmission. Noticeably, a high proton conductivity (0.15 S cm−1, 160 °C) and low activation energy (5.6 kJ mol−1) were obtained under anhydrous conditions, and the peak power density of the single-cell test was as high as 713 mW cm−2 at 160 °C. The results indicate that the combination of branching and a block structure is promising for actual use in HTPEMFCs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.