Abstract

An Al-supported cage-like mesoporous silica type MCM-41 has been prepared using a simple one-step synthetic procedure using oil shale residue and CTAB(Hexadecyl trimethyl Ammonium Bromide) as the template. The effects of temperature on the porosity, structure and surface area of Al-MCM-41 mesoporous materials were characterized by X-ray powder diffraction, N2adsorption desorption, scanning electron micrographs (SEM), transmission electron microscopy (TEM) techniques and Fourier transform infrared spectroscopy (FT-IR). The results indicated that temperature was a key to the characteristics of Al-MCM-41 materials, and when the temperature up to 333 K, Al-MCM-41 exhibited excellent characteristics with high degree of order, high surface area and pore volume. The one-step hydrothermal synthesized MCM-41 mesoporous material possessed high BET surface area, high pore size and high pore volume. They are respectively 835.1 m2/g, 32.6 Å and 1.22 cm3/g under the condition of the Si : Al =78:1, pH =10, crystallization temperature was 333K, crystallization time was 48h and calcination at 823 K for 5 h in air. All the results indicated the possibility of using oil shale residue as silicon and aluminum source to produce Al-MCM-41, and gave us a new way to recycle a solid waste. As well as this made it impossible to large-scale production of Al-MCM-41. Keywords: Al-MCM-41 mesoporous materials, oil shale residue, one-step synthesis

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.