Abstract

The synthesis and structural characterization of an amine-intercalated layered vanadium oxide and its silica-pillared derivative are described. The amine-intercalated vanadium oxide was prepared by reacting V 2O 5 with a mixture of alkylamine and a small amount of water at ambient temperature. The layer structure was examined by means of various analytical techniques, such as X-ray powder diffraction, thermal analysis, IR, UV–Vis and NMR spectroscopy, as well as elemental analysis. The alkylammonium ion-formed bilayers in the interlayer were ion-exchangeable with alkali ions. Moreover, ESR spectra showed that vanadium retained pentavalence through the intercalation reaction, although a small portion of vanadium was found to be reduced after the compound was stored in air for longer than 24 h. By reacting the amine-intercalated layer vanadia with a solution of tetraethyl orthosilicate, amine and acetone, followed by calcination, a silica-pillared derivative of microporous structure and high surface area was obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.