Abstract

Surfactant-free, radical precipitation co-polymerization of N-isopropylmethacrylamide (NIPMAm) and the cationic co-monomer N-(3-aminopropyl) methacrylamide hydrochloride (APMH) was carried out to prepare microgels functionalized with primary amines. The morphology and hydrodynamic diameter of the microgels were characterized by atomic force microscopy (AFM) and photon correlation spectroscopy (PCS), with the effect of NaCl concentration and initiator type on the microgel size and yield being investigated. When a V50-initiated reaction was carried out in pure water, relatively small microgels (~160 nm diameter) were obtained in low yield (~20%). However, both the yield and size increased if the reaction was carried out in saline or by using APS as initiator instead of V50. Stable amine-laden microgels in the range from 160 nm to 950 nm in diameter with narrow size distributions were thus produced using reaction media with controlled salinity. Microgel swelling and electrophoretic mobility values as a function of pH, ionic strength and temperature were also studied, illustrating the presence of cationic sidechains and their influence on microgel properties. Finally, the availability of the primary amine groups for post-polymerization modification was confirmed via modification with fluorescein-NHS.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.