Abstract

Biomorphic zirconia fibers were prepared by successive carbonization and/or calcining of sawdust impregnated by a solution of zirconium oxynitrate. Pyrolysis was performed in nitrogen (500°C), and calcining, in air (600°C). The physicochemical characteristics of samples were studied by adsorption measurements, electron microscopy, and X-ray diffraction. The biomorphic fibers were composed of zirconia nanoparticles not larger than 12 nm. The samples had a uniform phase composition dominated by the tetragonal ZrO2 phase; their specific surface area was 13–38 m2/g depending on the salt content in sawdust. It was assumed that the stabilization of the tetragonal phase could be related to the incorporation of mineral components (calcium, magnesium, and potassium compounds) of sawdust into zirconia; carbonization had no substantial effect on the properties of the resulting oxide. The method developed could be used to obtain tetragonal zirconia (without expensive reagents and water consumption) and utilize wood industry wastes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.