Abstract

A novel and well-defined pH-sensitive amphiphilic triblock copolymer brush poly(lactide)-b-poly(methacrylic acid)-b-poly(poly(ethylene glycol) methyl ether monomethacrylate) (PLA-b-PMAA-b-PPEGMA) and its self-assembled micelles were developed for oral administration of hydrophobic drugs. The copolymer and its precursors were synthesized by the combination of activators regenerated by electron transfer atom transfer radical polymerization (ARGET ATRP) and ring-opening polymerization (ROP) techniques. The molecular structures and characteristics were confirmed by GPC, (1)H NMR, and FT-IR. The critical micelle concentration (CMC) values of PLA-b-PMAA-b-PPEGMA in aqueous medium varied from 1.4 to 2.6 mg/L, and the partition equilibrium constant (K(v)) of pyrene in micellar solutions ranged from 2.873 × 10(5) to 3.312 × 10(5). The average sizes of the self-assembled blank and drug-loaded micelles were 140-250 nm determined by DLS in aqueous solution. The morphology of the micelles was found to be spherical by SEM. Nifedipine (NFD), a poorly water-soluble drug, was selected as the model drug and wrapped into the core of micelles via dialysis method. The in vitro release behavior of NFD from the micelles was pH-dependent. In simulated gastric fluid (SGF, pH 1.2), the cumulative release percent of NFD was relative low, while in simulated intestinal fluid (SIF, pH 7.4), more than 96% was released within 24 h. All the results showed that the pH-sensitive PLA-b-PMAA-b-PPEGMA micelle may be a prospective candidate as oral drug delivery carrier for hydrophobic drugs with controlled release behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.