Abstract

Saturated mono-estolide methyl esters and enriched saturated mono-estolide 2-EH esters were synthesized from oleic and different saturated fatty acids under three different synthetic routes. Estolide numbers (EN), the average number of fatty acid units added to a base fatty acid, varied with synthetic conditions. The attempts at obtaining saturated mono-estolide 2-EH esters, EN = 1, via distillation proved to be challenging, which lead to estolide samples with EN > 1 and the pour point values followed the same trend as the high EN estolides. The other synthetic routes provided saturated mono-estolide methyl esters with EN = 1. The resulting pour point values showed a linear relationship between the saturated capping chain length and pour point. As the saturated capping chain length increased the pour points also increased (higher temperatures): C-2 capped −30 °C, C-10 capped −12 °C, and C-18 capped 3 °C. The saturated mono-estolide methyl ester viscosities also showed an increase in viscosity at 40 and 100 °C as the saturated chain lengths increased. The viscosities for the C-4 saturated mono-estolide methyl ester was 9.5 cSt at 40 °C and 2.6 cSt at 100 °C, while medium chain length derivations (C-10 saturated mono-estolide methyl ester) were 19.7 cSt at 40 °C and 4.2 cSt at 100 °C, and at the longer chain length derivations (C-18 mono-estolide methyl esters) were 27.6 cSt at 40 °C and 10.7 cSt at 100 °C. In general, a new series of saturated oleic mono-estolide methyl esters were synthesized and physical properties were collected. The physical property data indicated that both chain length and EN affect low temperature properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call