Abstract

A novel soluble conjugated donor–acceptor (D–A) copolymer, poly(2-(2-((E)-2(3,4-dihexyl-5-(7-methyl-9-octyl-9H-carbazole-2-yl)thiophene-2-yl)vinyl)-6((E)-2-(3,4-dihexyl-5-methylthiophen-2yl)vinyl-4H-pyran-4-ylidene)malononitrile) (CZPM), consisting of alternating 2,7-carbazole and (bithiophenevinyl)-(2-pyran-4-ylidenemalononitrile) (TVM) was synthesized by Suzuki coupling polymerization. The photophysical and photovoltaic properties of the copolymer were investigated. The UV–vis absorption spectrum and cyclic voltammetry measurements of CZPM film showed that the copolymer has a relatively low band gap (1.81 eV) and a deep highest occupied molecular orbital (HOMO) level (−5.55 eV). Bulk heterojunction photovoltaic devices were fabricated using CZPM as donor and (6,6)-phenyl C 61-butyric acid methyl ester (PCBM) as acceptor with the weight blend ratio ranging from 1:1 to 1:4. The device with the blend ratio of 1:2 between CZPM and PCBM exhibited an open-circuit voltage ( V oc) of 0.74 V and a power conversion efficiency (PCE) of 0.1% under simulated AM1.5 solar irradiation (100 mW/cm 2). The relatively low conversion efficiency of the device is attributed to the ineffective exciton dissociation at the CZPM/PCBM interface and the imperfect film-forming property of the polymer resulting from the low molecular weight.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.