Abstract
Three donor–acceptor (D–A) 1,3-di(thien-2-yl)thieno [3,4-c]pyrrole-4,6-dione-based copolymers, poly{9,9-dioctylfluorene-2,7-diyl-alt-1,3-bis(4-hexylthien-2-yl)-5-octylthieno[3,4-c]pyrrole-4,6-dione}, poly{N-(1-octylnonyl)carbazole-2,7-diyl-alt-1,3-bis(4-hexylthien-2-yl)-5-octylthieno[3,4-c]pyrrole-4,6-dione}, and poly {4,8-bis(2-ethylhexyloxyl) benzo[1,2-b:3,4-b′]dithiophene-alt-1,3-bis(4-hexylthien-2-yl)-5-octylthieno[3,4-c] pyrrole-4,6-dione} were synthesized by Suzuki or Stille coupling reaction. By changing the donor segment, the bandgaps and energy levels of these copolymers could be finely tuned. Cyclic voltammetric study shows that the highest occupied molecular orbital (HOMO) energy levels of the three copolymers are deep-lying, which implies that these copolymers have good stability in the air and the relatively low HOMO energy level assures a higher open-circuit potential when they are used in photovoltaic cells. Bulk-heterojunction photovoltaic cells were fabricated with these polymers as the donors and PC71BM as the acceptor. The cells based on the three copolymers exhibited power conversion efficiencies of 0.22, 0.74, and 3.11% with large open-circuit potential of 1.01, 0.99, and 0.90 V under one sun of AM 1.5 solar simulator illumination (100 mW/cm2). © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Polymer Science Part A: Polymer Chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.