Abstract

Four new donor–acceptor type polymeric metal complexes (P1, P2, P3, and P4) with the same Cd(II) complex in side chain and different conjugated backbone structures were synthesized by Yamamoto coupling and applied in dye-sensitized solar cells (DSSCs) as photosensitizers. The photophysical, electrochemical, and thermal properties were investigated in detail, showing that conjugated backbone containing fluorene improved intramolecular charge transfer and increased generation of photocurrent. The highest power conversion efficiency of 0.56% (J sc = 1.63 mA cm−2, V oc = 0.69 V, FF = 0.50) was obtained with a DSSC based on P3 under simulated air mass 1.5 G solar irradiation, which shows a new strategy to design photosensitizers for DSSCs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.