Abstract
Three new solution-processable platinum(II) polyyne polymers containing zinc(II) porphyrinate chromophores P1, P2, and P3 and their corresponding dinuclear model complexes were synthesized via the CuI-catalyzed dehydrohalogenation reaction of the platinum(II) chloride precursor and each of the respective bis(ethynyl)-zinc(porphyrin) metalloligands. The thermal, photophysical (absorption, excitation and emission spectra), electrochemical, and photovoltaic properties of P1–P3 were investigated. These results are also correlated by time-dependent density functional theory (TDDFT) calculations. The computations corroborate the presence of moderate conjugation in the π-systems, somewhat more accentuated for P3 where more favorable dihedral angles between the porphyrin and thiophene rings are noted. Moreover, the computed excited states are predicted to be π–π* in nature with some charge transfer components from the trans-[−C≡CPt(L)2C≡C−]n unit to the porphyrin rings. The optical bandgaps range from 1.93 to 2.0...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.