Abstract

Two new 2D-conjugated D-A copolymers, PBDTT-S-DPP and PBDTSe-S-DPP, based on benzodithiophene (BDT) donor unit with alkylthio-thiophene or alkylthio-selenophene conjugated side chains and 2,5-bis(2-butyloctyl)-3,6-di(thiophen-2-yl)pyrrolo[3,4-c]pyrrole-1,4(2H,5H)-dione) (DPP) acceptor unit, were synthesized for the application as donor materials in polymer solar cells (PSCs). The two polymers were characterized by absorption spectroscopy, cyclic voltammetry, thermogravimetric analysis, theoretical calculation with density functional theory, X-ray diffraction and photovoltaic measurements. The results show that the alkylthio-thiophene/selenophene side groups on BDT unit and intramolecular hydrogen bonding interaction in DPP acceptor unit play important roles in affecting the absorption, HOMO energy levels, molecular planarity and the crystallinity of the polymers. The PSCs based on PBDTT-S-DPP or PBDTSe-S-DPP as donor and PC71BM as acceptor demonstrate power conversion efficiency (PCE) of 5.62% and 5.01%, with relatively higher Voc of 0.79 V and 0.76 V, respectively.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.