Abstract
A series of four small band gap polymers have been synthesized and have been incorporated into bulk heterojunction solar cells. The polymers were prepared via Yamamoto coupling and consist of alternating electron-rich dithiophene and electron-deficient bisquinoxaline or thienopyrazine units. In the thin solid films the optical band gaps (Eg) vary from 1.38 eV for the bisquinoxaline to 1.21 eV for thienopyrazine containing polymers. All polymers provide a photovoltaic response when blended with a methanofullerene as electron acceptor in the near infrared region up to the optical band gap. The best cells reach an efficiency of η = 1.5% under estimated standard solar light conditions (AM1.5G, 100 mW/cm2).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.