Abstract

Poly(oxyethylene 20 sorbitan) monolaurate (Tween® 20) methacrylates were synthesized by coupling methacryloyl chloride (MeOCl) to Tween 20 in the presence of 4-(N,N-dimethylamino) pyridine, using THF as a solvent, in order to investigate their suitability as precursors for photopolymerizable hydrogels in tissue engineering applications. The degree of substitution could be controlled by adjusting the molar ratio of MeOCl and Tween 20, giving three different monomers: Tween 20 monomethacrylate, Tween 20 dimethacrylate and Tween 20 trimethacrylate. Combined 1H NMR and MALDI-TOF MS confirmed these monomers to be of high purity and to have polydispersities less than 1.3. It was shown that aqueous solutions of the monomers were photoactive, all the methacrylate groups reacting within 30 minutes exposure to a UV light intensity of 145mW/cm2. Aqueous Tween 20 trimethacrylate was then combined with N-vinyl-2-pyrrolidone (NVP), giving tough copolymer hydrogels on photopolymerization, whose swelling ratios and swelling rates could be tuned by varying the Tween 20 trimethacrylate content. The use of a flexible spacer with a multifunctional monomer gives a permanent three-dimensional network, whilst maintaining degrees of swelling of between 60 and 85%, with potential for a wide range of biological and non-biological applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.