Abstract

A bisterpyridine complex of ruthenium(II) (Ru(tpy)22+) has been prepared in zeolite Y supercages and investigated by electronic absorption, electronic emission, and resonance Raman spectroscopy. In free solution this complex is practically nonluminescent, having a very short excited-state lifetime (250 ps) at room temperature. However, entrapment within the zeolite supercage results in dramatic increases in emission intensity and excited-state lifetime (140 ns) at room temperature. The observed temperature dependence of the excited-state lifetime has been modeled by a kinetic equation with two thermal terms corresponding to the so-called fourth 3MLCT state and ligand-field state (LF), respectively. It is shown that the increased lifetime of the entrapped complex results from zeolite-induced destabilization of the LF state, a conclusion which is in agreement with results obtained for a number of other zeolite-entrapped ruthenium(II) polypyridine complexes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call