Abstract

Two diazaporphyrin (DAP)-porphyrin hetero dimers, in β-meso and β-β configurations, were prepared to study their photoinduced intramolecular electron transfer properties. The two meso nitrogen atoms in the porphyrin ring of DAP change its redox potential, making DAP more easily reduced, compared to its porphyrin counterpart. A charge-transfer from porphyrin to DAP in both hetero dimers was verified by versatile optical spectroscopic methods. The steady-state fluorescence spectra indicated an efficient intramolecular exciplex formation for both dimers. For the β-meso dimer, ultrafast time-resolved spectroscopic methods revealed the subpicosecond formation of two types of primary short-living (1-18 ps) intramolecular exciplexes, which relaxed in toluene to form a long-living final exciplex (1.4 ns) followed by a longer-living charge transfer complex (>5 ns). However, in benzonitrile, the lifetime of the final exciplex was longer (660 ps) as was that of the charge transfer complex (180 ps). The β-β analogue formed similar short-living exciplexes in both solvents, but the final exciplex and the charge transfer state had significantly shorter lifetimes. The electrochemical redox potential measurements and density functional theory calculations supported the proposed mechanism.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.