Abstract

The self-assembled macroring N-(Zn-Fb-Zn)3 has been constructed by intermolecular complementary coordination among three trisporphyrin Zn-Fb-Zn molecules, each of which consists of a central free-base porphyrin and two imidazolyl-zinc-porphyrin ends. Thus, N-(Zn-Fb-Zn)3 has three slipped-cofacial zinc porphyrin dimers ("special pair model") and three free-base porphyrins, alternately. The zinc porphyrin dimers in N-(Zn-Fb-Zn)3 are covalently connected by a ring-closing olefin metathesis reaction between the allyl ether groups substituted on the zinc porphyrin dimers, giving a covalently linked macroring C-(Zn-Fb-Zn)3. The fluorescence spectra of C-(Zn-Fb-Zn)3 in several solvents show that the photoinduced energy transfer from one of the zinc porphyrin dimers to a free-base porphyrin occurs intramolecularly in toluene, whereas the photoinduced electron transfer predominantly occurs intramolecularly in N,N-dimethylformamide. Treatment of C-(Zn-Fb-Zn)3 with copper(II) acetate gives a Cu-containing heteromultinuclear porphyrin macroring C-(Zn-Cu-Zn)3, demonstrating that C-(Zn-Fb-Zn)3 could be a good precursor to construct various heteromultinuclear porphyrin macrorings.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.