Abstract
Two covalently linked boron dipyrromethene (BODIPY) dyads containing meso-phenyl BODIPY and meso-furyl BODIPY units connected via meso-meso and meso-α positions were synthesized by a Pd(0) coupling reaction. The dyads are freely soluble in common organic solvents and their structures were confirmed by HR-MS, 1D and 2D NMR techniques. Absorption studies indicate that the meso-aryl BODIPY and the meso-furyl BODIPY absorb in two different regions and that the meso-furyl BODIPY absorbs at lower energy compared to the meso-aryl BODIPY. The steady state fluorescence studies carried out by exciting the meso-aryl BODIPY unit clearly indicated an efficient singlet–singlet energy transfer from the meso-aryl BODIPY unit to meso-furyl BODIPY unit in both dyads. Furthermore the meso-α linked BODIPY dyad (ϕf=0.41) is more fluorescent than its corresponding BODIPY monomers whereas the meso-meso linked BODIPY dyad (ϕf=0.017) is weakly fluorescent. This unexpected observation was tentatively attributed to the restricted rotation of the BODIPY units in the meso-α linked dyad resulting in enhancement of radiative transitions. The time-resolved fluorescence study also indicated that meso-α linked BODIPY dyad is more fluorescent with singlet state lifetime of 3.7ns. The DFT studies carried out on dyads are in agreement with the experimental observations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.