Abstract
Carbazole and triphenylamine, are two well-known hole transporting units that are attached to electron transporting unit 4,5-diazafluorene in a fascinating way to bring out non-planar configuration of a molecule. The synthesized compound exhibits good thermal stability (Td > 515°C) and high glass transition temperature (Tg, 191°C). Optical bandgap (Egopt) obtained from solid state absorption spectra was calculated to be 2.93eV. Solid state photoluminescence spectra displays the emission maxima at 473nm. The emission characteristics of the compound observed in solvents of different polarity confirms the existence of intramolecular charge transfer in their excited state. Density functional theory studies reveal that HOMO and HOMO-1 localized on triphenylamine is spatially separated from LUMO of 4,5-diazafluorene, which manifest its bipolar character. The realization of long lived charge separated state upon photo-excitation from time resolved photoluminescence studies ascertains the charge transfer from triphenylamine to 4,5-diazafluorene. The experimental and theoretical analysis of the compound proved it to be a promising candidate for the fabrication of OLED devices.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.