Abstract

Synthetic details and stationary and time-resolved photophysical properties of five BODIPY derivatives containing chalcogen atoms are presented. The photophysical data are compared to those of a chlorine atom containing BODIPY, acting as a reference. A strong impact in the HOMO–LUMO transition energy is achieved via nucleophilic substitution with chalcogen based units. Going from oxygen to tellurium a bathochromic shift in both absorption and emission spectra from the green to the near infrared region was observed. By employing fluorescence single photon timing experiments in two solvents of different polarity, the excited state dynamics and their solvent dependence indicate the presence of a mechanism involving a photoinduced charge transfer that dramatically affects the optical radiative processes of these derivatives.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call