Abstract
Eu3+-doped alkaline-earth tungstates MWO4 (M=Ca2+, Sr2+, Ba2+) were prepared by a polymeric precursor method based on the Pechini process. The polymeric precursors were calcined at 700°C for 2h in order to obtain well-crystallized powders and then characterized by X-ray diffraction (XRD), thermogravimetric analysis (TG), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy and photoluminescence spectroscopy (PL). All prepared samples showed a pure crystalline phase with scheelite-type structure confirmed by XRD. It was noted that the charge-transfer band shifted from 260 to 283nm when calcium is replaced by strontium. However, this band was not observed for Eu3+-doped barium tungstate. Upon excitation at 260nm, the emission spectra are dominated by the red 5D0→7F2 transition at 618nm. By analyzing of the emission lines, it was inferred that Eu3+ ions occupy low symmetry sites in the host lattice. It was also found that Eu3+-doped SrWO4 displays better chromaticity coordinates and greater luminescence intensity than the other samples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.