Abstract

Washboard belt-like zinc selenide (ZnSe) nanostructures are successfully prepared by a simple chemical vapor deposition (CVD) technology without catalyst. The phase compositions, morphologies and optical properties of the nanostructures are investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM) and photoluminescence (PL) spectroscop, respectively. A vapor-liquid mechanism is proposed for the formation of ZnSe belt-like structures. Strong PL from the ZnSe nanostructure can be tuned from 462 nm to 440 nm with temperature varying from 1000 °C to 1200 °C, and it is demonstrated that the washboard belt-like ZnSe nanostructures have potential applications in optical and sensory nanotechnology. This method is expected to be applied to the synthesis of other II–VI groups or other group’s semiconducting materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.