Abstract

Hydrolysis of 1,10-phenanthrolinopyrrole ethyl ester leads to the acid derivative which is unstable at room-temperature releasing CO(2) and forming 1,10-phenanthrolinopyrrole (php). The ligand reacts with ruthenium(II) to form a series of complexes of the general formula [Ru(php)(n)(bpy)(3-n)](2+), where bpy = 2,2'-bipyridine and n = 1-3. The photochemical properties reveal that the complexes have longer-lived excited states than the standard complex, [Ru(bpy)(3)](2+). Their emission lifetimes range from 9.04 micros (n = 1) to 35.5 micros (n = 3) at 77 K compared to 7.57 micros for the standard. Similarly, at room-temperature, emission lifetimes range from 1.20 micros (n = 1) to 1.70 micros (n = 3) relative to the standard (0.56 micros). The emission quantum yields also have higher values than the standard [Ru(bpy)(3)](2+) under similar conditions. The temperature-dependent studies for the complexes establish the distribution among the radiative, nonradiative, and (3)MLCT to (3)d-d decay channels and are in agreement with the energy gap law.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call