Abstract

The synthesis of five new cholesteryl-based monomers (M-1−M-5) and the corresponding smectic comb-like polymers containing cholesteryl groups (P-1−P-5) is presented. The chemical structures were characterised by FT-IR, 1H NMR and elemental analyses. The specific optical rotations were evaluated with a polarimeter. The phase behaviour was investigated by polarising optical microscopy, differential scanning calorimetry, thermogravimetric analysis, and X-ray diffraction. The specific optical rotation values of these monomers and polymers with the same number of phenyl rings and terminal groups were nearly equal; however, they decreased with increasing the aryl numbers in the mesogenic core. The monomers M-1−M-5 showed oily streak and focal conic optical textures, or finger print textures characteristic of the chiral nematic phase. The polymers P-1−P-5 showed the smectic A phase. The melting, clearing, and glass transition temperatures increased, and the mesophase temperature ranges widened with increasing the aryl number in the mesogenic core. However, although the molecular structures of M-4 and M-5 were similar to those of M-3, namely their mesogenic cores contained three phenyl rings, their phase behaviour differed considerably, and T m and T i of M-4 and M-5 were less than those of M-3. In addition, M-4 and M-5 showed a clear glass transition similar to the polymer. Furthermore, the ester linkage bond and aryl arrangement in the mesogenic core also affected the phase behaviour.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.