Abstract

The synthesis and the effect of a combination of 6-glycine and 14-phenylpropoxy substitutions in N-methyl- and N-cycloproplymethylmorphinans on biological activities are described. Binding studies revealed that all new 14-phenylpropoxymorphinans (11−18) displayed high affinity to opioid receptors. Replacement of the 14-methoxy group with a phenylpropoxy group led to an enhancement in affinity to all three opioid receptor types, with most pronounced increases in δ and κ activities, hence resulting in a loss of μ receptor selectivity. All compounds (11−18) showed potent and long-lasting antinociceptive effects in the tail-flick test in rats after subcutaneous administration. For the N-methyl derivatives 13 and 14, analgesic potencies were in the range of their 14-methoxy analogues 9 and 10, respectively. Even derivatives 15−18 with an N-cyclopropylmethyl substituent acted as potent antinociceptive agents, being several fold more potent than morphine. Subcutaneous administration of compounds 13 and 14 produced significant and prolonged antinociceptive effects mediated through peripheral opioid mechanisms in carrageenan-induced inflammatory hyperalgesia in rats.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.