Abstract

The present study reports the performance enhancement of alkaline direct ethanol fuel cell (ADEFC) by using non-functionalized (Vulcan) and functionalized (Vulcan-F) carbon supported Pd, PdSn, PdNi and PdNiSn anodic electrocatalysts produced by impregnation-reduction method. The electrocatalysts are studied by thermogravimetric analysis (TGA), X-ray diffraction (XRD), transmission electron microscopy (TEM), cyclic voltammetry (CV), and ADEFC stability tests. TGA measurements of Vulcan evidence the characteristic weight losses attributed to the presence of surface functional groups due to the acid treatment. XRD shows that a higher degree of alloying is reached between Pd and Sn, whereas the Ni in PdNi and PdNiSn exists mostly segregated in the oxide form. TEM analysis indicates an agglomeration of Pd and PdSn particles, whereas a more uniform particle distribution is observed for PdNi and PdNiSn samples. CV curves show that the onset potential is shifted towards negative values for binary and ternary samples supported on functionalized Vulcan (Vulcan-F) indicating that the ethanol oxidation is facilitated on the functionalized surface. ADEFC fuel cell tests reveal that the highest open circuit voltage and maximum power density are achieved for the PdNiSn supported on Vulcan-F in which the characterizations evidenced improved textural properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.