Abstract

Herein, we report a method for the synthesis of biobased surfactants derived from sugar beet pulp (SBP) monosaccharides, l-Ara and d-GalA. The surfactants were prepared via one-pot reductive amination, allowing the introduction of different alkyl chain lengths and methyl modifications. Optimal reaction conditions were established to achieve high yields and easy purification. The synthesized surfactants including the tertiary amines exhibited desirable properties, including solubility, foamability, and reduction of surface tension. Notably, the anionic surfactants derived from d-GalA demonstrated better solubility and foam performance compared to those derived from l-Ara. In addition, these surfactants exhibited surface tension and critical micelle concentration (CMC) comparable to those of the commercial surfactant sodium lauryl ether sulfate (SLES). Furthermore, the biodegradable surfactant GalA1.8 displayed excellent emulsifying properties and low skin irritation potential. On the l-Ara surfactant with a short chain, Ara1.6 has potential as a hydrotrope. These findings suggest that biobased surfactants derived from SBP monosaccharides have promising applications in various industries, including pharmaceuticals, cosmetics, detergents, and chemicals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.