Abstract

A novel copolymer containing nano‐SiO2 was synthesized by free radical polymerization using acrylamide (AM), acrylic acid (AA), and nano‐SiO2 functional monomer (NSFM) as raw materials under mild conditions. The AM/AA/NSFM copolymer was characterized by infrared (IR) spectroscopy, 1H NMR spectroscopy, elemental analysis, and scanning electron microscope (SEM). It was found that the AM/AA/NSFM copolymer exhibited higher viscosity than the AM/AA copolymer at 500 s−1 shear rate (18.6 mPa·s versus 8.7 mPa·s). It was also found that AM/AA/NSFM could achieve up to 43.7% viscosity retention rate at 95°C. Mobility control results indicated that AM/AA/NSFM could establish much higher resistance factor (RF) and residual resistance factor (RRF) than AM/AA under the same conditions (RF: 16.52 versus 12.17, RRF: 3.63 versus 2.59). At last, the enhanced oil recovery (EOR) of AM/AA/NSFM was up to 20.10% by core flooding experiments at 65°C.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.