Abstract

Mn2+ ions doped ZnS semiconductor nanocrystals (ZnS:Mn NCs) were synthesized using colloidal chemical method at 70 degrees C without any capping agents. The as-prepared undoped ZnS and ZnS:Mn NCs were characterized by UV-Vis absorption spectra, fluorescent emission spectra, X-ray powder diffraction (XRD), inductively coupled plasma analysis (ICP), X-ray photoelectron spectroscopy (XPS), Dynamic light scattering (DLS), cyclic voltammogram and electronic transmission microscopy (TEM). The dependence of photoluminescence of ZnS:Mn NCs on dopant concentration was studied. The results show that Mn2+ ions mainly stay at ZnS nanocystal surface, and Mn2+-surface defect state complex was formed, as a result of which, surface defect emission of ZnS nanocrystals was substituted with Mn2+-related PL emission. The strongest fluorescent emission intensity was obtain at 1.85 at% Mn2+ doped ZnS:Mn NCs. The Mn2+ doped ZnS:Mn NCs are of 5 nm in diameter. The emission peak at 575 nm is attributed to d-d (4T1 --> 6A1) transition of Mn2+ ions. The existence of Mn2+-related photoluminescence could be well correlated with cyclic voltammogram of Mn2+-doped NCs, where pair of oxidation and reduction peaks were clearly observed due to the doped Mn2+ ions. The adsorbed Mn2+ ions on ZnS NCs produced neither Mn2+ emission nor redox peaks. For heavily doped ZnS:Mn NCs (4.87 at%), redox peaks gap in cyclic voltammogram became larger and new oxidation peak appeared. Correspondingly, when the Mn2+ doping concentration reached 4.87 at%, the Mn2+-related emission totally disappears due to the Mn-Mn interactions. This work implys that electrochemical technique is possibly an useful tool to probe the local structure of doped Mn2+ ions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.