Abstract

The Zinc oxide (ZnO) nanoparticles have been grown on n type silicon substrate using tin (Sn) metal as seed layer by a low cost thermal evaporation method. SEM images show that the ZnO nanoparticles have been uniformely grown on the whole substrate surface relatively perpendicular to the substrate. The Photoluminescence (PL) spectrum consists of strong UV emission at wavelength of 355 nm along with a broad near band edge (NBE) emission covering a wide range of wavelength from 370 to 550 nm. This broadening region exhibits blue, violet and green emission due to the presence of native defects such as zinc interstitial (Zn<sub>i</sub>), oxygen vacancy (V<sub>O</sub>) and oxygen interstitial (O<sub>i</sub>) in the band gap of ZnO. Raman spectroscopy shows the existence of E<sub>2</sub> mode at 437 cm<sup>-1</sup> which confirms the pure wurtzite hexagonal phase of ZnO. The optical and structural properties of ZnO nanoparticles could be explored for blue-violet light emitting diodes (LEDs) and gas sensing applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.