Abstract

45P2O5–15BaO–25ZnO–15B2O3 glasses doped with different concentrations (0 mol%, 0.1 mol%, 0.25 mol%, 0.5 mol%, and 0.75 mol%) of Gd3+ were prepared by a melt-quenching method and treated to fabricate glass-ceramics containing BaZn2(PO4)2 crystals by controllable crystallization. The structural, optical, and dosimetric properties were investigated. FTIR spectra indicate that the glasses are composed of [PO4], [BO3], and [BO4] basic structural units. The XRD pattern analysis indicates that the samples contain BaZn2(PO4)2 crystals. In the photoluminescence (PL) spectra, two emission bands are observed at 307 and 313 nm due to the 6P5/2→8S7/2 and 6P7/2→8S7/2 transitions of Gd3+, respectively. The OSL dosimetric properties of glass-ceramics were studied further under beta radiation of 90Sr. The optimal Gd3+ doping concentration of 0.5 mol% was determined. The fading of the OSL signal shows that the CW-OSL signal of Gd3+-doped BaZn2(PO4)2 glass-ceramics decays by about 58.95% within 120 h, and the intensity remains stable thereafter. The thermoluminescence (TL) curve has three peaks at 164, 240, and 344 °C. Minimum detectable dose (MDD) of the 0.5 mol% Gd3+-doped BaZn2(PO4)2 glass-ceramics was calculated as 0.675 mGy. The samples also exhibit good signal reusability and a broad linear dose-response range (0.3–500 Gy). Results show the excellent dosimetric properties of Gd3+-doped BaZn2(PO4)2 glass-ceramics and their potential application in radiation dosimetry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.