Abstract

N–In codoped ZnO nanobelts were successfully synthesized via high-temperature chemical vapor deposition for the first time, using the mixture of In/ZnO as a precursor. The EDX spectrum showed that In was introduced into ZnO nanobelts. In order to better understand the optical properties of N–In codoped ZnO nanobelts, the Raman and low-temperature PL spectra of the undoped, In-doped and N–In codoped ZnO nanostructures were measured. By contrasting, N is incorporated into the nanobelts. The temperature dependent photoluminescence (PL) spectra were investigated. Their PL spectra in the temperature from 9 K to room temperature were dominated by an A oX emission of excitons bound to 2No–In Zn acceptor complexes. The dissociation energy of the acceptor complexes is estimated to be 89–112 meV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.