Abstract

[structure: see text] Branched conjugated systems with a terminal alkyne function have been prepared starting from 4-(triisopropylsilylethynyl) phenylacetylene by applying the following iterative reaction sequence: (i) metal-catalyzed cross-coupling reaction of the terminal alkyne with 3,4-dibromobenzaldehyde or 2,5- dibromobenzaldehyde; (ii) Corey-Fuchs dibromoolefination and treatment with an excess of LDA. The building blocks thus prepared have been subjected to a Pd-catalyzed cross-coupling reaction with 1,4-diiodobenzene to yield isomeric branched pi-conjugated systems containing 7 (first generation) or 15 (second generation) phenyl units connected by ethynyl spacers. The different pi-conjugation patterns in those isomeric derivatives have a dramatic effect on their electronic properties, as attested by the differences observed in their absorption and emission spectra. Finally, theoretical calculations have been performed to rationalize the optical properties of these compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.