Abstract

CdS nanowires were prepared by a paired cell method, using highly ordered porous anodic alumina (PAA) membranes as templates. The morphology, structure, and composition of these nanowires were characterized by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDS), and selected area electron diffraction (SAED) pattern. SEM images indicated that nanowires arrays are highly ordered and coincide with the contours of PAA. The EDS analysis, combined with HRTEM images and SEAD patterns, confirmed the formation of CdS. The formation and growth mechanism of CdS nanowires, as well as the optical properties, were also analyzed in details. The results indicated that the formation and growth of CdS nanowires experience from initial nuclei, nanoparticles, linear pearl-chain structures to final nanowires, attributed to electrostatic adsorption and ions diffusion. A strong emission with a maximum around 430 nm was observed from the synthesized CdS nanowires, which was attributed to the recombination of trapped electron/hole pairs. The absorption edge in UV–Vis spectrum of CdS/PAA nanoarrays showed a blue shift due to the quantum confinement effects. The technique can be used to fabricate other compound nanowires and newly light-emitting semiconductor materials.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call