Abstract

Organic semiconductors as active materials in thin-film electronic devices such as alkynes, heterocycles, dyes, ferrocenes, spiranes, or porphyrins, with special geometries and certain electronic molecular parameters, which possess nonlinear optical (NLO) properties and offer several major advantages over their inorganic counterparts, are presented in this chapter. There are a number of simple and versatile techniques that can be employed for the deposition of these important classes of materials. The matrix-assisted pulsed laser evaporation (MAPLE) technique provides advantages with regard to making organic films of different morphologies on different types of substrates. New insights into the crystallization growth mechanisms in MAPLE-deposited conjugated polymer films, which realize the connection between the structure and the carrier transport properties, are discussed herein. Second harmonic generation (SHG) capabilities of the thin films were also investigated.

Highlights

  • During the last decades, the nonlinear optical (NLO) materials have gained significant role because of their various applications in medicine, molecular switches, luminescent materials, laser technology, spectroscopic and electrochemical sensors, data storage, microfabrication and imaging, modulation of optical signals, and telecommunication [1–3]

  • Other classes of heterocyclic compounds were reported to have nonlinear optical properties, and some of them are presented below. 1,2,3,4,5,6,7,8Octahydroacridine (OHA) 47 thin films grown by matrix-assisted pulsed laser evaporation (MAPLE) showed the second harmonic generation (SHG) signal of the conformational asymmetry of OHA and the nonlinear optical applications of it [114]

  • Nonlinear optical properties of ferrocene carboxaldehyde 49 thin films grown by matrix-assisted pulsed laser evaporation (MAPLE) were studied by Constantinescu et al [116] using two-photon absorption investigations

Read more

Summary

Introduction

The nonlinear optical (NLO) materials have gained significant role because of their various applications in medicine, molecular switches, luminescent materials, laser technology, spectroscopic and electrochemical sensors, data storage, microfabrication and imaging, modulation of optical signals, and telecommunication [1–3]. Recent advances in chromophore design report some features for classic dipolar organic structures with good nonlinear optic properties [89]: (1) presence of a π-conjugated systems with π electron delocalization, (2) a “push-pull” system, which is a couple donor-acceptor or connected to a system that contributes to the delocalization of the π electrons; (3) presence of a strong electron donor groups (e.g., ─NR2, ─NHR, ─OR, ─OH), and strong electron withdrawing groups (e.g., ─CF3, SO2CF3, ─SO3H, ─NO2, ─CN), positioned at opposite ends of a conjugated molecule in case of dipolar molecules; (4) great values of dipole moment and polarizability; (5) small HOMO-LUMO energy gap; (6) planarity of the molecule for neutral, polar, and zwitterionic resonance structures. Alternative NLO materials, present more advantages compared with dipole molecules [90]: (1) the second harmonic response (SHG) does not depend on the polarization of the incident light because they are more isotropic than the dipolar molecules; (2) β values of the octupoles can be increased by increasing of intramolecular charge transfer; (3) octupoles form noncentrosymmetric crystals; and (4) they are less likely to undergo relaxation due to the lack of ground-state dipole moment

Synthesis of the compounds with NLO properties
Synthesis of the nonlinear optical fullerenes
Synthesis of the nonlinear optical perylenes
Synthesis of the nonlinear optical thiophene compounds
Synthesis of the nonlinear optical dyes
Synthesis of the polymers with nonlinear optical properties
Matrix-assisted pulsed laser evaporation
Parameters of NLO properties
Experimental determination of second harmonic generation (SHG) in thin films
Conclusions
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.