Abstract

A novel acrylonitrile-capped poly(propylene imine) dendrimer (PAN4) was synthesized and characterized with FTIR and 1H-NMR. PAN4 and its precursor (poly(propylene imine) dendrimer (1.0GPPI) were employed to cure bisphenol A epoxy resin (DGEBA), and the nonisothermal reaction kinetics of DGEBA/PAN4 and DGEBA/1.0GPPI was systematically investigated using a differential scanning calorimeter (DSC) in a comparative way. The apparent activation energies determined with the Kissinger method were 59.7 kJ/mol for DGEBA/1.0GPPI and 53.9 kJ/mol for DGEBA/PAN4. Applied the Malek method, it was found that a two-parameter autocatalytic model (SB(m, n)) could well simulate the reaction rates, and further analysis of the reaction rate constants showed PAN4 could cure DGEBA at a greatly decreased rate by a factor a more than ten compared with 1.0GPPI control.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call